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ABSTRACT 

The contemporary theory of mixtures is employed to predict the re
sponse of composites to shock loading. The composite may consist of any 
finite number of constituents. Jump equations expressing balance of mass, 
momentum , and energy for each of the constituents are presented, following 
the approach of Kelly 11\ . These equations are then specialized to apply to a 
uniaxial shock wave running into undisturbed material. The resulting 
theory is shown to encompass constituents which undergo phase transfor
mations and exchange thermal energy within the shock surface. 

INTRODUCTION 

R ECENTLY, Tsou and Chou have presented a so-called control-volume ap
proach to Hugoniot synthesis for composite materials (References [2] and 

[3]). The usual approach to this problem (cf. Lysne [4] ; Anderson, et. al., [5] ; 
Torvik, [6]) evolves around a mass-weighted average of the constituent 
Hugoniots to obtain the composite Hugoniot. The approach of Tsou and 
Chou is somewhat different in that they employ the jump relations for mass, 
momentum, and energy for the composite together with certain mixture 
concepts relating constituent and composite densities, energies, etc. to obtain 
the composite H ugoniot. Tsou and Chou have successfully compared their 
theory with experimental results for two alloys: copper-zinc and beryllium
aluminum. Their theory is somewhat restricted , however. The possibilities 
of chemical reaction among the constituents, or phase transformations of a 
constituent are not considered . Also, it must be assumed that either (I) the 
constituents come into thermal equilibrium with each other within the shock 
surface, or (2) no heat is transferred between constituents at any time. Neither 
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of these assumptions seems too likely, and indeed the true thermal condition 
probably lies somewhere between these two limiting states. 

In this paper we present equations to represent the composite as a classical 
mixture. We shall show that the theory of Tsou and Chou can be obtained 
as a special case of the more general mixture theory, and that the mixture 
approach w ill yield the necessary tools to consider phase transformations, 
chemical reactions, and partial heat transfer among the constituents within the 
shock surface. The mixture theory approach has previously been employed by 
Riney, et. al. [7] and Davis [8] to represent geologic materials subject to 
shock loading. A large volume of work concerning applications of mixture 
theory to other types of loading for various materials has also appeared 
(e.g ., Knops and Steel [9]). 

BASIC EQUATIONS 

Mixture theory is founded on a set of concepts elucidated by Truesdell 
and Toupin [10]. Each constituent of the mixture is considered a separate 
continuum which may be acted upon by exterior actions and by other constit
uents. It is postulated that the mean motion of the whole mixture is a 
mathematical consequence of the motions of the individual constituents and, 
moreover, that this mean motion must obey the laws which govern the motion 
of a single material. Thus, the mixture as a whole does not know whether it 
is composed of only one or of several constituents. Since each constituent is 
considered a continuum, every place in the mixture may be simultaneously 
occupied by particles of any or all of the various constituents. Whereas mass, 
momentum, and energy of each constituent are not necessarily conserved, the 
mixture mass, momentum, and energy are. 

We shall designate the mixture constituents by Sa, a = 1,2, ... , k. The 
total number of constituents, k, is left arbitrary . By p" we denote the mass 
density of Sa. Since Sa is a continuum, Pa is a bulk density; that is, the 
mass of Sa per unit volume of the mixture. The mixture density, designated 
P, is given by 

P = L Pa (I) 

Henceforth, quantities lacking Greek subscripts will refer to the mean proper

ties of the mixture, and the symbol L will always indicate the summation 
a 

over a = 1,2, ... ,k. 
The particle velocity of the constituent Sa is given by 

aXa 
v =-

a at Xa _ constant 
(2) 

479 



R. O. Davis, Jr. and M . M. Cottrell 

Here Xa is the place occupied by the particle Xa at time t. We also introduce 
the concentration or mass fraction, Ca, for the constituent Sa. 

(3) 

Then the mean velocity of the mixture, v, is given by the mass-weighted 
average of the individual velocities . 

(4) 

We also define the diffusion velocity, Ua , of the constituents Sa as 

(5) 

Multiplying Equation (5) by Pa and summing over ll' leads to the identity 

(6) 
a 

We next define a partial stress tensor, T a, for the constituent Ser, as well 
as a specific internal energy, fer, and a heat flux vector, her. The. total stress, 
T, internal energy, f, and heat flux, h, for the mixture are then given by the 
following relations. 

T = L (Ter - PaUer ® uer) (7) 
er 

f = ~ Ca (fer + ~ u~) (8) 

h = ~ {her + T erUa - Per (fer + ~ u~) Uer} (9) 

In the above equations, ® denotes the tensor product of two vectors, while 
u~ denotes the inner product of Uer with itself. Motivation for Equations (7), 
(8), and (9) may be found in Reference [10]. 

We shall now set down three equations which govern the balance of mass, 
momentum, and energy for each of the mixture constituents, Ser, crossing a 
shock surface. These relations were first derived by Kelly in Reference [I]. 
We denote by U the spatial velocity of the shock, assumed normal to the 
shock surface. Letting 'l! represent any quantity which approaches continuous 
limits on both sides of the shock surface, we denote the jump in 'l! by 

['l!] = 'l! + - 'l!-

where 'l!+ represents the limiting value of 'l! immediately in front of the shock 
and 'l! - the value immediately behind . 

The balance of mass jump relation for the constituent Ser crossing the 
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shock surface can then be written as 

(10) 

In this equation, N denotes the unit normal to the shock surface and fa is the 
(J 

surface mass supply for Sa on the shock surface. Except for the term Ca, 
(J 

Equation (10) is identical to the usual mass jump equation for a single mate
rial. The extra term allows for mass transfer among the mixture constituents. 
It accounts for the growth (or loss) of Sa mass within the shock surface. 

The balance of momentum jump equation for Sa is given by 

[PaVa @ (U - va) + Tal· N + rna = 0 (I I) 
(J 

Here rna is called the surface momentum supply for Sa. It accounts for the 
(J 

growth or decay of Sa momentum within the shock surface. Finally, the 
energy jump equation for the constituent Sa is given by 

+ fa = 0 
(J 

( 12) 

where fa is the surface energy supply for Sa within the shock surface. Like 
(J 

the mass and momentum supplies previously defined, fa allows for energy 
(J 

exchange among the mixture constituents within the shock. 
Equations (10), (II), and (12) are correct balance statements crossing any 

surface within the mixture, shock or not. If we are to use them effectively 
below, however, we must assume the existance of a stable shock front passing 
through the mixture. This being done, we point out that the jump equations 
apply only to the limit values of the various quantities Pa, Va, etc. leading 
and following the shock. No assumption of a perfect step pulse is made, nor 
is it considered appropriate for many mixtures. 

Following the usual program of mixture theory, we sum Equations (10), 
(II), and (12) over the range a = 1, 2, ... , k to obtain the mixture jump equa
tions. These equations express conservation of mass, momentum, and energy 
in the whole mixture. We employ Equations (I) and (3) through (9) as well 
as the postulate that the mean motion of the mixture must obey the jump 
conditions for a single material. The mass, momentum, and energy equations 
for the mixture become respectively 

L fa - 0 (13) 
a (J 

L rna - 0 ( 14) 
a (J 
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(15) 

For a more detailed derivation of these three relations, see Reference [I]. 
Next we wish to make a distinction between the physical configuration of 

the composite material and the idealized mixture configuration outlined 
above. The mixture equations are based on the concept that each constituent 
is itself a continuum. and any place in the mixture may be simultaneously 
occupied by all of the constituents. It is unlikely that this will be true of 
the physical configuration of the composite. where generally the constituents 
will remain distinct from one another. The two configurations. physical and 
mixture. should not be confused. Rather we desire to employ both in order 
to best represent the composite material. To accomplish this we introduce 
the volume fraction na for the constituent Sa. We define na as the ratio of the 
volume of Sa in the physical configuration per unit volume of the mixture . 
Clearly then 

L na = I ( 16) 
a 

We view na on a macroscopic scale only. determining it on an appropriately 
sized neighborhood of the point in question. 

We can now define certain quantities in the physical configuration . The 
crystal density. POI. for the constituent a is defined by 

Pol = naPa (17) 

Clearly. Pol represents the mass of Sa per unit volume of that constituent in 
the physical configuration . We assume Pol remains finite so that Pol will vanish 
whenever na does. Next. we assume the constituents are isotropically ar
ranged in the physical configuration, so that surfaces intersecting the com
posite will consist of constituent Sa over na of their area. Then we can define 
a crystal stress. Ta . for Sa given by 

Ta = naTa , 

Similarly, we have a crystal heat flux . hOI' 

hOI = nJia 

(18) 

(19) 

We may also introduce a crystal internal energy, fa' Since the internal energy 
is measured per unit mass of Sa rather than per unit volume. we see that fa 

and fa will be identical , provided surface energy in the physical configuration 
is ignored. Finally. the mixture density. P. can be related to the constituent 

crystal densities. POI ' by 

l = L ~a 
P a Pot 

(20) 

as is easily proved by Equations (3) and (17) . 
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ASSUMPTIONS 

In this section we shall make several specializing assumptions which will 
lead to certain particular cases of the general mixture theory described above. 
We shall first assume that the stress in all constituents is sufficiently high so 
that a hydrodynamic stress state prevails. That is 

(21) 

where Pa is called the partial pressure for the constituent Sa . We may also 
define a crystal pressure, Pa , given by 

Ta = -P 1 a . (22) 

Then from Equation (18) we have 

(23) 

Next, we restrict further consideration to plane shock waves running into 
undisturbed material. The constituent density leading the shock, p:; , will thus 
be the initial density, Pao. Also we need only consider the components of 
velocity and heat flux normal to the planar shock surface. These will be 
designated Va and ha • Further, we let the velocity, internal energy, pressure, 
and heat flux leading the shock vanish. That is 

a = 1,2, ... , k (24) 

These assumptions are made solely for the sake of convenience. The resulting 
equations are somewhat more cumbersome if the above assumptions are not 
made, but they offer no more real difficulty in derivation . 

Using the above assumptions, the jump equations [Equations (10), (II), 
and (12») can be written as 

(25) 

P~ + rna p;;(U - V~) V~ (26) 
(]" 

(27) 

Here, we have used U and rna to designate the components of U and rna 
(]" (]" 

normal to the shock surface. These three equations are precisely the usual 
jump relations for a single material except for the supply terms Ca, rna, and 

(]" (]" 

i a. These supply terms allow us the versatility to better represent composite 
(]" 

materials . 
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Next we assume each of the constituents has the same particle velocity 
following the shock . That is 

vI = vi = ... = Vi; = V (28) 

The last equality is obtained from Equation (4) . This assumption implies that 
the constituents may not diffuse and we have from Equation (5) 

a = 1,2, ... , k (29) 

When no diffusion occurs, the definitions for total pressure, internal energy, 
and heat flux are greatly simplified. Using Equations (21) and (29) in Equa
tions (7), (8), and (9), we now have 

P=L Pa (30) 
a 

f = L Cafa (31 ) 
a 

h = L ha (32) 

Equation (28) also yields certain other simplifications. Equation (25) can now 
be written as 

U ~a 
1Ja = --- + -----

U - v- Pao( U - v-) 
(33) 

where 1Ja is the compression in Sa 

(34) 

and we have assumed Pao rf O. Summing Equation (25) over a and using 

Equation (13), we obtain the following familiar result for the whole mixture. 

where 

U 
1J = 

U - v-
(35) 

(36) 

We conclude, then , that whenever the mass supply, Ca , vanishes, the compres
(1 

sion, 1Ja, is independent of a. 

1Ja = 1J , for all a such that ca = 0 
(1 

(37) 

That is, each constituent is equally compressed. Of course, the compres
sion, 1Ja, is defined in terms of mixture density , Pa, rather than the crystal 
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density, Pa. No relation such as Equation (37) can be obtained for the con
stituent compression in the physical configuration, P~/Pao. When ca is not 

(f 

zero, Equation (37) must be replaced by 

TJa = TJ (I + ~au) 
Pao 

(38) 

We can now investigate the question of a phase transformation in one of 
the constituents. Suppose constituent Sl transforms into constituent S2 at 
shock pressures in excess of P*. We assume that no S2 is initially present 
leading the shock. That is 

(39) 

We assume that, following the shock, all of constituent Sl has been trans
formed to S2 so that 

PI = 0 

Using Equation (40) in Equation (25), we obtain 

for P~ 2': P* 

while use of Equation (39) in Equation (25) gives 

for P~ 2': P* 

Then, ifno other mass exchange occurs, Equation (13) implies that 

Pi(U - v-) = PIOU 

(40) 

(41 ) 

(42) 

(43) 

whenever P~exceeds the transformation pressure, P*. In this case, we have 

pi 
- = TJ3 = TJ4 = . . . = TJk = TJ 
Plo 

(44) 

More complex interactions, including chemical reactions among constituents 
within the shock surface, can be treated in a similar manner. It is necessary 
only to assume constitutive relations for the supplies, Ca , obeying Equation 

(f 

(13). 
Next, we turn to the physical configuration and assume that the con

stituent crystal pressures, P~, are all equal, provided Sa exists behind the 
shock. That is 

P~ = 15-, for all a such that p~ ~ 0 (45) 

Then Equations (23) and (30), together with this assumption, imply that 
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p- = p- (46) 

That is, the total mixture pressure must equal the crystal pressure in each 
constituent. The momentum jump equation [Equation (26)] can then be 
written as 

(47) 

Summing this equation over Ci and using Equations (14) and (16), we obtain 
the usual momentum jump equation for the whole mixture. 

(48) 

Our assumptions of equal particle velocities and equal crysta l pressures in all 
extant constituents have implied the form of the momentum supply functions, 
mao Eliminating the quantity (U - v-) v- between Equations (47) and (48) 
(J 

yields 

(49) 

where c;; is the concentration p;; / p - following the shock . Using Equation 
(38), we can write c;; as 

(50) 

Note that, if no mass tran sfer occurs, the concentration will not change 
crossing the shock. 

The energy balance relation, Equation (27) , may also be simplified by 
these assumptions. If Sa does not vanish behind the shock , we can divide 
Equation (27) by the volume fraction, n;; , to obtain 

(51) 

where Equations (17) , (19) , (23) , (28), and (45) have all been used . Also, 
summing Equation (27) over Ci and taking Equations (15), (30), (31) , and (32) 
into account, we obtain the usual energy jump equation for the whole mixture. 

(52) 

We point out here that the constituent heat flux, h;;, does not account in any 
way for transfer of heat between constituents. The action of h;; is entirely 
restricted to Sa. Heat may be transferred among the constituents, however, 
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and this exchange is manifested in the energy supply, Ea' In the absence of 
u 

heat conduction and energy transfer (i.e . h;; = 0, E a = 0, ex = 1,2, .. . , k), 
u 

Equations (SI) and (S2) combine to yield a particularly simple relation be
tween the total energy density for any constituent and that for the whole 
mixture. 

(S3) 

Equations (3) and (17), in addition to (SI) and (S2) , have been used to obtain 
this relation. 

CONCLUSIONS 

The simplified theory presented in the preceeding section can now be com
pleted by the addition of certain constitutive relations. The resulting set 
of coupled algebraic equations may then be solved to obtain any of the usual 
Hugoniot descriptions (P - - 1/, P- - v-, U - v-, etc.) for the whole mix
ture. In this manner, the Hugoniot for a composite material may be con
structed from known equation-of-state data for its constituents, plus con
stitutive relations governing mass and energy transfer, and heat conduction. 

The simplest possible theory occurs when none of the mixture constituents 
is heat conducting, and no mass or energy transfer occurs . That is 

ex = 1,2, ... , k (54) 

This case is equivalent to the adiabatic theory of Tsou and Chou [3J. No heat 
is transferred between constituents , and phase transformations cannot be 
considered. 

The following equations result from the assumptions of Equation (S4). 
Jump relations for mass, momentum, and energy for the whole mixture are 

PoU 

p - (U-v-)v-

p-(U - V-)(~- + ~ (V - )2) 

(SS) 

(48) 

(S6) 

These three equations are then augmented by the energy balance relation for 
each of the constituents obtained from Equation (S3). 

CaO (~;; + ~ (V - )2) = n;; (~ - + ~ (V-)2) ex = 1,2, . .. , k (S7) 

Note that, when no mass transfer occurs , the concentration , c;; , following the 
shock must equal the initial concentration, cao [Equation (SO)J. The volume 
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fraction , n;;, can be related to the constituent crystal density , p;; , by com
bining Equations (3) and (17) . Thus 

a = 1, 2, . . . k (58) 

while Equation (20) relates the mixture and constituent densities 

~ = L ~a~ (59) 
P a Pa 

Finally, we have the equation-of-state for each of the constituents. 

a , {3 = I , 2, . . . , k (60) 

Equations (55) through (60) now constitute 3k + 4 equations in 3k + 5 un
knowns:p - ,U, V- , P-, f - ,n;; ,p;; ,f;;, a = 1,2, . .. ,k. As in any Hugoniot 
description, one variable is specified in order to solve for all others. 

This specialized theory may now be expanded by eliminating any of the 
three assumptions of Equation (54). For example, if one wishes to consider 
heat conduction within the constituents, it is necessary to assume constitutive 
relations for the fluxes , h;; , and to replace Equation (57) by 

subject to Equation (32) . On the other hand, if energy transfer among con
stituents is desired , Equation (57) is replaced by 

cao (f;; + ! (v - )~ = n;; (f -+ ! (V - )2) + !a 
2) 2 Po U 

(62) 

Then it is necessary to postulate constitutive equa tions for the energy supply 
terms, ~ a . 

a 

a, {3 = 1,2, ... , k (63) 

subject to Equation (15) . Fina lly, if mass transfer is to be considered , 
Equ ation (57) is replaced by Equation (53) . Equations (20) and (50) are also 
employed and constitutive relations of the form 

a, {3 = 1, 2, ... , k (64) 

can be assumed. Any two, or all three, of the assumptions in Equation (54) 
may be easily dropped by combining the equations noted above. 

In applica tion to a particul a r composite material, the constitutive rela
tions [Equations (63) and (64)] may be formulated in any manner consistent 
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with Equations (13) and (15). Equation (64) should be primarily of interest 
when constituent phase transformations seem lik ely . The form of Equation 
(64) applicab le to this case has been outlined in the preceding section . Equa
tion (63) can be employed to effect the transfer of thermal energy between 
constituents. A possible form for Equation (63) is a linear combination of 
the in ternal energy differences. 

fa = L ffJa(€P - €p) 
(J fJ 

(65) 

Equation (15) is then satisfied whenever 

(66) 

More complex forms for Eq uat ion (63) can be postulated employing the con
stituent temperatures. 

In a future paper, we shall employ the theory presented above to repre
sent certain two- and three-constituent mixtures and compare this representa
tion with experimental Hugoniot results. 

NOMENCLATURE 

N unit normal vector to shock surface 
P pressure 
T stress tensor 
U velocity vector of shock surface 
Xa particle of Sa 
Ca concentration or mass fraction for Sa 
C a mass supply for Sa 
(J 

h heat flux 
rna momentum supply for Sa 
(J 

na volume fraction for Sa 
Sa constituent lX 

time 
Ua diffusion velocity for Sa 
V velocity vector 
x position 

internal energy 
f a energy supply for Sa 
(J 

T/ compression 
p mass density 
[ 1 denotes jump crossing shock 

Subscripts 

lX , f3 identify constituent 
o = initial value 
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Superscripts 

+ value leading shock 
value following shock 
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